Environmental Biotechnology
Online EB edition > 2017 Volume 2 > Article


Research

Measurement of bacterial adhesion to metal surfaces with different chemical composition – evaluation of different methods
Anna Żywicka, Karol Fijałkowski

Pages: 14-22

DOI: 10.14799/ebms283

open PDF file


Abstract

In the current study attention has been focused on the evaluation of different methods of measurement of bacterial adhesion to the metal surfaces with different chemical composition. The direct methods, which included determination of the number of bacterial cells using fluorescence microscopy and Colony Forming Units (CFU) on agar medium, and indirect methods using Alamar Blue (AB) and MTT assays, were evaluated. The chemical compositions of the metal surfaces included: copper, iron, chromium and nickel. Interaction effects of assay and metal compound have been specifically demonstrated in this study. It was found that metal ions reacted with components of the indirect colorimetric tests used in this study (AB and MTT assay). Consequently, those tests gave positive false results. In contrast to the indirect methods, direct counting methods such as microscopy techniques and CFU counting, were successfully applied for evaluation of bacterial adhesion to the metal surfaces. However, considering the limits for the surfaces of the examined samples for microscopy, the determination of the CFU was found to be the best method for testing the adhesion to metal surfaces. The method, combined with the appropriate detachment procedures allowed for a precise determination of the number of bacteria on the entire surface of the evaluated metal samples.


References

Ahearn, D.G., Grace, D.T., Jennings, M.J., Borazjani, R.N., Boles, K.J., Rose, L.J., Simmons, R.B., Ahanotu, E.N. 2000. Effects of hydrogel/silver coatings on in vitro adhesion to catheters of bacteria associated with urinary tract infections. Current Microbiology 41(2):120-125.
https://doi.org/10.1007/s002840010105

An, Y.H., Friedman, R.J. 1997. Laboratory methods for studies of bacterial adhesion. Journal of Microbiological Methods 30(2):141-152.
https://doi.org/10.1016/S0167-7012(97)00058-4

Beech, B., Sunner, J. 2004. Biocorrosion: towards understanding interactions between biofilms and metals. Current Opinion in Biotechnology 15(3):181-186.
https://doi.org/10.1016/j.copbio.2004.05.001

Bosch, J.A., Veerman, E.C., Turkenburg, M., Hartog, K., Bolscher, J.G., Amerongen, A.V. 2003. A rapidsolid-phase fluorimetric assay for measuring bacterial adherence, using DNA-binding stains. Journal of Microbiological Methods 53(1):51-56.
https://doi.org/10.1016/S0167-7012(02)00220-8

Coetser, S.E., Cloete T.E. 2003. Biofouling and biocorrosion in industrial water systems. Critical Reviews in Microbiology 31(4):213-232.
https://doi.org/10.1080/10408410500304074

Drudy, D., O'Donoghue, D.P., Baird, A., Fenelon, L., O'Farrelly, C. 2001. Flow cytometric analysis of Clostridium difficile adherence to human intestinal epithelial cells. Journal of Medical Microbiology 50(6):526-534.
https://doi.org/10.1099/0022-1317-50-6-526

Fields, R.D., Lancaster, M.V. 1993. Dual-attribute continuous monitoring of cell proliferation/ cytotoxicity. American Biotechnology Laboratory 11(4):48-50.

Frioni, A., Natalizi, T., Tendini, M., Fraveto, A., Pantanella, F., Berlutti, F., Pietropaoli, M., Passeri, D., Terranova, M.L., Rossi, M., Valenti P. 2010. Biotimer assay for counting bacterial biofilm. Biophysics and Bioengineering Letters 3(2):1-9.

Fuller, M.E., Streger, S.H., Rothmel, R.K., Mailloux, B.J., Hall, J.A., Onstott, T.C., Fredrickson, J.K., Balkwill, D.L., DeFlaun, M.F. 2000. Development of a vital fluorescent staining method for monitoring bacterial transport in subsurface environments. In: Environmental Microbiology - Methods and Protocols, (ed. I.T. Paulsen, A.J. Holmes), pp. 103-108. Humana Press - Totowa, New Jersey.
https://doi.org/10.1128/AEM.66.10.4486-4496.2000

Garrett, T.R., Bhakoo, M., Zhang, Z. 2008. Bacterial adhesion and biofilms on surfaces. Progress in Natural Science 18(9):1049-1056.
https://doi.org/10.1016/j.pnsc.2008.04.001

Hamid, R., Rotshteyn, Y., Rabadi, L., Parikh, R., Bullock, P. 2004. Comparison of Alamar Blue and MTT assays for high through-put screening. Toxicology in Vitro 18(5):703-710.
https://doi.org/10.1016/j.tiv.2004.03.012

Jin, L.Z., Baidoo, S.K., Marquardt, R.R., Frohlich, A.A. 1998. In vitro inhibition of adhesion of enterotoxigenic Escherichia coli K88 to piglet intestinal mucus by egg-yolk antibodies. FEMS Immunology & Medical Microbiology 21(4):313-321.
https://doi.org/10.1111/j.1574-695X.1998.tb01179.x

Klemm, P., Vejborg, R., Hancock, V. 2010. Prevention of bacterial adhesion. Applied Microbiology and Biotechnology 88(2):451-459.
https://doi.org/10.1007/s00253-010-2805-y

Kumar, C.G., Anand, S.K. 1998. Significance of microbial biofilms in food industry. International Journal of Food Microbiology 42(1-2):9-27.
https://doi.org/10.1016/S0168-1605(98)00060-9

Maioli, E., Torricelli, C., Fortino, V., Carlucci, F., Tommassini, V., Pacini, A. 2009. Critical appraisal of the MTT assay in the presence of Rottlerin and Uncouplers. Biological Procedures Online 11: 227-240.
https://doi.org/10.1007/s12575-009-9020-1

Mariscal, A., Lopez-Gigosos, R.M., Carnero-Varo, M., Fernandez-Crehuet, J. 2009. Fluorescent assay based on resazurin for detection of activity of disinfectants against bacterial biofilm. Applied Microbiology and Biotechnology 82(4):773-783.
https://doi.org/10.1007/s00253-009-1879-x

Martin, K.L., An, Y.H. 2000. Basic equipment and microbiological techniques for studying bacterial adhesion. In: Handbook of Bacterial Adhesion: Principles, Methods, and Application, (ed. Y. H. An, R.J. Friedman), pp. 103-120. Humana Press - Totowa, New Jersey.
https://doi.org/10.1385/1-59259-224-4:104

Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods 65(1-2):55-63.
https://doi.org/10.1016/0022-1759(83)90303-4

O'Brien, J., Wilson, I., Orton, T., Pognan, F. 2000. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cytotoxicity. European Journal of Biochemistry 267(17):5421-5426.
https://doi.org/10.1046/j.1432-1327.2000.01606.x

Ofek, I., Doyle, R.J. 1994. Methods, models, and analysis of bacterial adhesion. In: Bacterial adhesion to cells and tissues, (ed. I. Ofek, R.J. Doyle), pp. 16-40. Springer US.
https://doi.org/10.1007/978-1-4684-6435-1_2

Pantanella, F., Valenti, P., Natalizi, T., Passeri, D., Berlutti F. 2013. Analytical techniques to study microbial biofilm on abiotic surfaces: pros and cons of the main techniques currently in use. Annali di igiene: medicina preventiva e di comunità 25(1):31-42.

Patel, H.D, Zaveri, A.D., Zaveri, D.N, Shah, S., Solanki, A. 2013. Comparison of the MTT and Alamar blue assay for in vitro anti-cancer activity by testing of various chalcone and thiosemicarbazone derivatives. International Journal of Pharma and Bio Sciences 4(2):707-716.

Peeters, E., Nelis, H. J., Coenye, T. 2008b. Evaluation of the efficacy of disinfection procedures against Burkholderia cenocepacia biofilms. Journal of Hospital Infection 70:361-368.
https://doi.org/10.1016/j.jhin.2008.08.015

Pettit, R.K., Weber, C.A., Kean, M.J., Hoffmann, H., Pettit, G.R., Tan, R., Franks, K.S., Horton, M.L. 2005. Microplate Alamar blue assay for Staphylococcus epidermidis biofilm susceptibility testing. Antimicrobial Agents and Chemotherapy 49(7):2612-2617.
https://doi.org/10.1128/AAC.49.7.2612-2617.2005

Rampersad, S.N. 2012. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors 12(9):12347-12360.
https://doi.org/10.3390/s120912347

Rudzok, S., Krejči, S., Graebsch, C., Herbarth, O., Mueller, A., Bauer, M. 2011. Toxicity profiles of four metals and 17 xenobiotics in the human hepatoma cell line HepG2 and the protozoa Tetrahymena pyriformis - a comparison. Environmental Toxicology 26(2):171-186.
https://doi.org/10.1002/tox.20541

Sakum, Y., Washio, J., Takeuchi, Y., Sasaki, K., Takahashi, N. 2011. A highly sensitive AlamarBlue® method for evaluating bacterial adhesion to biomaterials. Interface Oral Health Science Conference Springer, Tokyo, pp. 201-203.

Sanchez, R., Kanarek, L., Koninkx, J., Hendriks, H., Lintermans, P., Bertels, A., Charlier, G., Van Driessche, E., 1993. Inhibition of adhesion of enterotoxigenic Escherichia coli cells expressing F17 fimbriae to small intestinal mucus and brush-border membranes of young calves. Microbial Pathogenesis 15:207-219.
https://doi.org/10.1006/mpat.1993.1090

Sheng, X., Ting, Y.P., Pehkonen, S.O. 2008. The influence of ionic strength, nutrients and pH on bacterial adhesion to metals. Journal of Colloid and Interface Science 321(2):256-264.
https://doi.org/10.1016/j.jcis.2008.02.038

Sims, J.T., Plattner, R. 2009. MTT assays cannot be utilized to study the effects of STI571/Gleevec on the viability of solid tumor cell lines. Cancer Chemotherapy and Pharmacology 64(3):629-33.
https://doi.org/10.1007/s00280-009-1004-y

Vesterlund, S., Paltta, J., Karp, M., Ouwehand, A.C. 2005. Measurement of bacterial adhesion - in vitro evaluation of different methods. Journal of Microbiological Methods 60(2):225-33.
https://doi.org/10.1016/j.mimet.2004.09.013

Walencka, E., Różalska, S., Sadowska, B., Różalska, B. 2008. The influence of Lactobacillus acidophilus - derived surfactants on Staphylococcal adhesion and biofilm formation. Folia Microbiologica (Praha) 53(1):61-66.
https://doi.org/10.1007/s12223-008-0009-y

Wataha, J.C., Hanks, C.T., Craig, R.G. 1993. The effect of cell monolayer density on the cytotoxicity of metal ions which are released from dental alloys. Dental Materials 9(3):172-176.
https://doi.org/10.1016/0109-5641(93)90116-8


  © ChemProf 2009