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Higher concentrations, however, inhibited L. minor growth
completely. These tests indicated that the MBR generally reduced
growth inhibition more effectively than the RBC. In the
genotoxicity tests (chromosome aberrations and micronuclei
formation) root meristem cells of V. faba were examined. The
genotoxicity of the different batches varied, and neither system
was particularly effective for reducing genotoxicity. The results of
this study indicate that, because its composition is so variable,
coke wastewater should be constantly monitored. Also, because
of its potentially high genotoxicity, the ecotoxicological
characteristics of coke wastewater should be monitored in
addition to basic indicators of wastewater quality, such as COD,
BOD, and content of nitrogen compounds.
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ABSTRACT
To investigate the effectiveness of a rotating biological contactor
(RBC) and a two-stage membrane bioreactor (MBR) for the
treatment of coke wastewater, samples were collected three times
(Batches I, II, III) from the “Jadwiga” coke plant in Zabrze, Poland at
two-week intervals. The wastewater was then diluted with tap
water (1:3 ratio, wastewater: tap water) and then treated at
retention times of 4.1 days (RBC) and 7 days (MBR). For
phytotoxicity and genotoxicity tests, the wastewater was sampled
from various points in the treatment systems and further diluted
to produce a range of concentrations. In the phytotoxicity tests
(growth inhibition), Lemna minor and Vicia faba were used. A low
concentration of wastewater (6.25%) often stimulated growth.
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ABBREVIATIONS

CA chromosome aberration
EC50 half maximal effective concentration
Embr effluent, after wastewater treatment in MBR
Erbc effluent, after wastewater treatment in RBC
Fmbr flow between two units of MBR reactor
INF influent, wastewater after preliminary treatment, diluted four times with

tap water before biological treatment
MBR two-stage membrane bioreactor
MI mitotic index
MN micronucleus
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minor and Vicia faba. L. minor is highly sensitive to
ammonia and phenols (Cayuela et al. 2007; Wang 1990),
whereas V. faba is particularly useful in genotoxicity tests
(Dong and Zhang 2010; Roccotiello et al. 2011).
The aim of this study was to determine how efficiently

an RBC and a two-stage MBR reduce the phytotoxicity
(growth inhibition) and genotoxicity (frequency of
micronuclei and aberrant mitotic divisions) of coke
wastewater. Before these biological treatments, the coke
wastewater was mechanically-chemically treated. To test
the wastewater’s phytotoxicity after biological treatment,
L. minor was used in growth inhibition tests, and V. faba was
used in growth inhibition and genotoxicity tests.

MATERIALS AND METHODS

Test of respiration activity
of activated sludge
The aim of this test was to determine the concentration of
coke wastewater that would be safe for activated sludge
and biofilm microorganisms. Samples of activated sludge
from a MBR reactor were centrifuged (1500 rpm, 10 minutes)
and test suspensions were prepared by mixing volumes of
activated sludge, centrifuged sludge supernatant, coke
wastewater in proportions of 6:6:0, 6:5:1, 6:3:3, 6:1:5, and
6:0:6, respectively.
To measure oxygen consumption, test suspensions were

placed in 120mL bottles and covered with airtight lids
equipped with oxygen sensors (N5221 Elwro). The bottles
were placed on magnetic stirrers and the oxygen sensors
were connected with an oxygen level recorder (Line
Recorder T2 4620). The recorder drew oxygen concentration
curves over time, which allowed determination of the
respiration activity of the suspensions, expressed as
gO2·m-3·h-1. On the basis of these results the wastewater was
diluted four times (3 volumes of tap water: 1 volume of coke
wastewater) before its further use in the experimental
systems.

Coke wastewater characteristics
Coke wastewater was collected three times at two-week
intervals (batch test) from the “Jadwiga” coke plant, which
is part of JSW KOKS S.A. in Zabrze, Poland. Before
collection, coke wastewater was pre-treated in the coke
plant by separation of oil and phenols, and removal of
ammonia and volatile acids. As the preliminary treatment
and dilution had reduced the ammonium nitrogen
concentration in the coke wastewater, ammonium chloride

INTRODUCTION

Because coke is a commonly used fuel in heavy industry,
the treatment of coke wastewater is an important issue.
This is particularly true in Poland, which is one of the
largest producers of coke in the world (Machowska 2011).
The Silesian region of Poland, in particular, must deal with
large amounts of coke wastewater due to the massive
production of coke in this area.
The composition of coke wastewater makes it difficult to

treat, and even after treatment it may threaten the
environment and wildlife when introduced into water
bodies (Kumar et al. 2015). Coke wastewater is characterized
by a temperature of 30-92°C, pH 7.1-8.8, 64-2600g·m-3 of
biological oxygen demand (BOD), 525-6500g·m-3 of
chemical oxygen demand (COD), 50-1200g·m-3 of phenols,
50-1100g·m-3 of total Kjehldahl nitrogen, 265-465g·m-3 of
thiocyanates and 15-80g·m-3 of cyanides (Pal and Kumar
2014). It also contains suspended solids, tarry substances,
polycyclic aromatic hydrocarbons, phenols, ammonia,
thiosulfates, and hydrogen sulfide (Zhao et al. 2009). Some
components of coke wastewater are carcinogenic (Dong
and Zhang 2010).
The biological treatment of coke wastewater is a very slow

and sensitive process because the toxic compounds that are
present can be harmful to the microorganisms involved. To
minimize these adverse effects, physicochemical pre-
treatment is used, such as settling, coagulation, aeration,
steam stripping or separation of oil and phenols (Pal and
Kumar 2014).
In the present study, two technological systems were

tested: a rotating biological contactor (RBC) and a two-
stage membrane bioreactor (MBR). The advantages of the
RBC are that no recirculation is required, the biomass
concentration is sufficient, and bacteria are protected by
the biofilm. The advantages of the MBR are that the
biomass concentration and the loading rate are high, no
recirculation is required, and the separating properties of
the biomass are good. Both systems can be successfully
used in coke wastewater treatment (Qi et al. 2007; Zhao et
al. 2009), but membrane systems are potentially more
attractive (Pal and Kumar 2014). Recent reports indicate
that nanofiltration membranes enable efficient separation
of cyanides and phenols (Kumar and Pal 2014). Thus,
a membrane-integrated hybrid system could provide
efficient and low-cost coke wastewater treatment (Kumar
et al. 2015).
To test the toxicity of coke wastewater after treatment

ecotoxicological indicators can be used, such as Lemna

NC negative control
PC positive control
RBC rotating biological contactor
U undiluted wastewater after preliminary treatment



Phytotoxicity (growth inhibition) tests
The first batch of coke wastewater was used in the growth
inhibition tests, which were performed in triplicate for
each dilution. In these tests both L. minor and V. faba
were used.
In the L. minor tests, the concentrations of each sample

(U, INF, Fmbr, Embr, Erbc) were 6.25%, 12.5%, 25%, 50%,
and 100%. As a negative control (NC), standard growth
medium for macrophytes was used, which was prepared
according to the OECD Test No. 221 (2006). L. minor plants,
which together had a minimum of 12 leaves, were placed in
plastic Petri dishes containing 20mL of test solution and
incubated for 13 days at room temperature under natural
photoperiod. At the end of the test, the leaves were counted,
the percentage of growth inhibition was determined, and
EC50 values (concentration of wastewater at which plant
growth was 50% of that observed in a negative control) were
calculated with a probit model.
In the V. faba tests, the concentrations of each sample

(INF, Fmbr, Embr, Erbc) were also 6.25%, 12.5%, 25%, 50%,
and 100%. Tap water was used as a negative control. V. faba
seeds were soaked in tap water for 48 hours and then
transferred to a moistened paper towel until the roots
germinated. Seven seeds with a maximum root length of
about 3.5cm were placed in containers with 200mL of the test
solutions described above. Seeds were incubated for 7 days at
room temperature and under natural photoperiod. At the
end of the test, the length of the roots was measured, the
percentage of growth inhibition was determined, and EC50
values were calculated with a probit model.

Genotoxicity tests
Each of the three batches of coke wastewater were sampled
at the points mentioned above. Each of the samples was then
diluted with tap water to obtain several concentrations. For
INF these concentrations were 12.5%, 25%, 50%, 75%, and
100%; for Fmbr, they were 3.13%, 6.25%, 12.5%, 25%, and
50%; for Embr, 6.25%, 12.5%, 25%, 50%, and 75%; and for
Erbc, 3.13%, 6.25%, 12.5%, 25%, and 50%. As a negative
control (NC), tap water was used, and as a positive control
(PC), a 5g·m-3 solution of maleic hydrazide.
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The MBR (Figure 1) consisted of two membrane bioreactors
in series. The first reactor was aerobic with a temperature of
about 20°C, while the second reactor was anoxic with a
constant temperature of 30°C. The diameter of the pores in
the A4 membrane (Kubota System) was 0.4µm. The total
retention time in the MBR was 7 days.
The RBC (Figure 2) consisted of three chambers

arranged in series, and the system’s retention time was 4.1
days. Each chamber had four disks that were installed on a
common rotation axis. Disks were covered with biofilm,
41% of each disk was submerged, and the area of each disk
that was available for bacterial growth was 0.87m2.
Untreated coke wastewater at about 20°C was continuously
supplied by peristaltic pump to the first chamber of the set.
Rotation of disks allowed the biofilm to alternate contact
with wastewater and air, for feeding and aeration of the
biofilm.
Figure 1 and Figure 2 show sampling points in the MBR

and RBC, respectively.

was added (1500gNH4Cl·m-3) as a substrate for activated
sludge before the start of the MBR and RBC processes.
Coke wastewater was sampled at the following points in the
treatment process:
• U (undiluted wastewater after preliminary treatment),
• INF (influent for biological treatment diluted in volumetric
proportions of 1 part of undiluted coke wastewater per
3 parts of tap water),

• Fmbr (flow between two units of MBR reactor),
• Embr (effluent from MBR reactor), and
• Erbc (effluent from RBC).
• The chemical characteristics of INF were pH 7.5-8.4, 397-
595gN-NH4+·m-3 of ammonium nitrogen, 440-1148gO2·m-3
of COD, 20-340g·m-3 of phenols, 2-42g·m-3 of cyanides and
12-14g·m-3 of thiocyanates.

Biological treatment systems
and sampling points

Figure 1. Schematic diagram of membrane bioreactor (MBR)
system.

Figure 2. Schematic diagram of rotating biological contactor
(RBC) system.
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V. faba seeds were soaked in water for 48 hours and then
transferred to a moistened paper towel until the roots
germinated. A test container was prepared with 200mL of each
of the test concentrations described above; thus, with INF at a
concentration of 12.5%, there was one test container for each
batch of wastewater. Seven V. faba seeds were placed into each
of the test containers. Seeds were incubated for 44 hours at
room temperature and under natural photoperiod. To arrest
mitotic division of cells after incubation, roots were placed in a
solution of 70% ethanol and glacial acetic acid mixed in a 3:1
ratio. In this solution, roots were incubated in darkness at 4°C
for 24 hours. Then the roots were transferred to 70% ethanol
and refrigerated until microscopic examination (Ma et al. 1995;
Rank and Nielsen 1993).
To prepare a microscope slide, the root was immersed in 1M

HCl and kept in a water bath at 55-60°C for 6-8 minutes. Then it
was flushed with distilled water and 1mm of the meristematic part

of the root tip was crushed with a scalpel. Root cells were stained
with drops of 2% orcein, covered with a cover slip, and examined
with a light microscope at 1000X magnification. Approximately
600 to 1000 cells were examined from each root, for a total of 6000
cells. The results were expressed in the following manner:
• mitotic index (MI) (percentage of cells undergoing mitotic
division),

• frequency of micronuclei (MN) (percentage of cells with
visible micronuclei),

• frequency of chromosomal aberrations (CA) (percentage
of aberrant mitotic divisions in all examined cells
undergoing mitosis).

RESULTS AND DISCUSSION

Phytotoxicity (growth inhibition) tests

Table 1. Inhibition of growth (%) of Lemna minor exposed to coke wastewater for 13 days and of Vicia faba
exposed to coke wastewater for 7 days, and EC50 values of the coke wastewater.

Coke wastewater concentration [%]

Lemna minor

U

INF

Fmbr

Embr

Erbc

Vicia faba

INF

Fmbr

Embr

Erbc

* significantly different (p<0.05) from negative control (for L. minor,
standard growth medium for macrophytes; for V. faba, tap water)

U undiluted wastewater after preliminary treatment
INF influent for biological treatment diluted in volumetric proportions
of 1 part of undiluted coke wastewater per 3 parts of tap water

Fmbr flow between the two chambers of the MBR reactor
Embr effluent from the MBR reactor
Erbc effluent from the RBC reactor

25.0

46.4

-59.7*

-89.0*

-5.4

-43.7

-6.2

35.1

13.6

91.7*

0.0

90.5*

100.0*

100.0*

-2.9

37.8

34.5

60.4*

4.2

54.8

46.4

22.4

61.4*

0.4

20.8

35.6

23.0

100.0*

-27.8

100.0*

100.0*

90.0*

23.5

53.8*

40.0

57.1*

8.0

out of range

11.3

10.2

4.6

out of range

47.3

72.7

29.0

100.0*

63.4*

100.0*

100.0*

100.0*

44.1

63.7*

60.9*

81.3*

Wastewater sample
6.25 12.5 25 50 100

EC50

concentrations of Embr inhibited its growth less than high
concentrations of Erbc. With L. minor, in contrast, 6.25 and
12.5% concentrations of Embr inhibited growth less than the
same concentrations of Erbc. Higher concentrations of both
effluents inhibited L. minor growth completely, with one
exception (90% inhibition by Erbc at 50% concentration).

In the growth inhibition tests, the MBR generally
outperformed the RBC (Table 1). With both V. faba and
L. minor, the EC50 of Embr was higher than that of Erbc,
indicating that Embr was less toxic. Although low
concentrations of Embr (6.25 and 12.5%) inhibited V. faba
growth more than the same concentrations of Erbc, high
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The calculated EC50 values of INF with both L. minor and
V. faba were out of range, suggesting that even undiluted INF
could not cause 50% inhibition of growth. However, this is
contradicted by the experimental results showing more than
50% inhibition of L. minor growth at 12.5 and 100%
concentrations of INF. It appears that the large fluctuations
in the results made it impossible to accurately estimate the
EC50. We can only postulate that the reasons for these
unexpected results were either some methodological mistake
or unknown interactions between various components of the
wastewater samples (Dong and Zhang 2010).
The results for inhibition ofL. minor growth by Fmbr andEmbr

were similar: a 6.25% concentration stimulated growth, whereas
all higher concentrations strongly inhibited growth. There are
several possible reasons why growth was stimulated at a 6.25%
concentration. It may simply have been that the concentrations
of toxicants were low enough that they had little or no effect on
L. minor growth, and other substances in the coke wastewater
stimulated growth. It is also possible that low concentrations of
the toxicants themselves may have stimulated growth. For
example, N-NH4+ was present in INF at concentrations from
397 to 595gN-NH4+·m-3. L. minor can remove N-NH4+, and at

this low concentration of coke wastewater, its removal capacity
may not have been exceeded by any remaining N-NH4+ in Fmbr
and Embr. Also, although the heavy metal content of the
wastewater was not studied here, low concentrations of heavy
metals have been reported in coke wastewater (Vazquez et al.
2007). Such low concentrations of heavy metals, if present, may
have been beneficial to L. minor: low doses of certain heavy
metals (e.g. Cd, Cr, Zn) may help organisms to defend
themselves against certain chemical mutagens (Burkart and
Ogorek 1986; De Marco et al. 1999; Rieger et al. 1990).
In the case of V. faba, lower concentrations of wastewater

appeared to inhibit growth to a lesser extent than higher
concentrations, and the lowest concentration (6.25%) of INF
and Fmbr may even have stimulated growth, although this
effect was not significant. Wiszniowski et al. (2009) reported
a similar result, which could be explained by the presence of
elements that are essential for plant growth in the wastewater
(Dane et al. 2006). This apparent trend might also be due to
the fact that V. faba was able to detoxify low concentrations of
toxic substances, as in Baranowska-Morek (2003).

Genotoxicity tests

Table 2. Mitotic index (MI), and frequency of chromosomal aberrations (CA) and micronuclei (MN) observed in
roots of Vicia faba exposed for 7 days to three batches of coke wastewater (I, II, III). Data for positive controls
(PC) were 1.9% for MI, 3.4% for CA, and 2.38% for MN.

Batch of coke wastewater

INF MI 63.1 nt nt 50.8 64.0 63.0 42.7 37.5 75.7 nt nt 64.4 62.3 66.4 61.4 54.2 66.4 nt nt 57.1 57.1 57.1 42.9 36.4

CA 0.6 nt nt 2.6 8.1 10.4 27.4 33.1 0.0 nt nt 4.0 9.2 11.4 8.6 9.7 1.0 nt nt 7.2 8.6 16.4 29.9 36.5

MN 0.07 nt nt 0.00 0.03 0.20 0.57 1.80 0.00 nt nt 0.00 0.03 0.10 0.00 0.03 0.30 nt nt 2.80 4.50 4.67 7.10 12.73

Fmbr MI 63.1 52.1 48.6 54.8 47.7 45.5 nt nt 75.7 50.0 42.0 60.5 47.1 34.9 nt nt 66.4 61.3 46.5 47.4 39.0 25.9 nt nt

CA 0.6 0.5 1.9 0.4 0.4 1.5 nt nt 0.0 0.8 4.4 0.9 1.5 0.8 nt nt 1.0 0.9 0.8 1.5 3.0 6.9 nt nt

MN 0.07 0.17 0.90 0.20 0.20 1.30 nt nt 0.00 0.10 0.08 0.05 0.10 0.42 nt nt 0.30 0.15 0.38 1.17 0.20 0.40 nt nt

Embr MI 63.1 nt 47.2 44.4 31.9 35.5 39.7 nt 75.7 nt 61.1 63.2 62.7 50.2 22.7 nt 66.4 nt 56.7 42.9 40.8 43.2 27.2 nt

CA 0.6 nt 1.1 3.1 1.8 1.8 3.7 nt 0.0 nt 0.5 0.7 0.6 3.1 4.5 nt 1.0 nt 2.2 4.3 5.2 5.1 8.1 nt

MN 0.07 nt 0.08 0.48 0.23 0.33 0.30 nt 0.00 nt 0.13 0.18 0.58 0.18 1.23 nt 0.30 nt 1.02 1.17 1.22 1.33 1.73 nt

Erbc MI 63.1 72.0 69.5 53.5 61.7 54.9 nt nt 75.7 60.5 65.8 77.0 59.0 42.9 nt nt 66.4 57.9 59.4 58.6 58.1 55.8 nt nt

CA 0.6 0.9 2.0 4.6 3.1 8.2 nt nt 0.0 0.3 0.4 0.4 1.0 0.4 nt nt 1.0 10.1 16.6 18.5 20.5 25.2 nt nt

MN 0.07 0.00 0.03 0.17 0.03 0.03 nt nt 0.00 0.03 0.00 0.03 0.00 0.00 nt nt 0.30 1.57 1.47 3.20 6.65 10.35 nt nt

nt not tested
NC negative control (tap water)
PC positive control (5g·m-3 solution of maleic hydrazide)
INF influent for biological treatment diluted in volumetric proportions of 1 part of undiluted coke wastewater per 3 parts of tap water
Fmbr flow between the two chambers of the MBR reactor
Embr effluent from the MBR reactor
Erbc effluent from the RBC reactor

I II III

INF concentration [%] INF concentration [%] INF concentration [%]

S
am

p
li
n
g

si
te

In
d
ic

at
or

[%
] NC

3.13 6.25 12.5 25 50 75 100 3.13 6.25 12.5 25 50 75 100 3.13 6.25 12.5 25 50 75 100
NCNC
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